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Abstract 
Context: Among children, evidence on long-term longitudinal associations of accelerometer-measured sedentary time, light physical activity 
(LPA), and moderate to vigorous PA (MVPA) with lipid indices are few. The mediating role of body composition and other metabolic indices in 
these associations remains unclear and whether poor movement behavior precedes altered lipid levels is unknown.  
Objective: This study examined the associations of sedentary time, LPA, and MVPA from childhood through young adulthood with increased 
lipids, the mediating role of body composition, and whether temporal interrelations exist.  
Methods: Data from 792 children (58% female; mean [SD] age at baseline, 11.7 [0.2] years), drawn from the Avon Longitudinal Study of Parents 
and Children (ALSPAC) UK birth cohort, who had at least 2 time-point measures of accelerometer-based sedentary time, LPA, and MVPA during 
clinic visits at ages 11, 15, and 24 years and complete fasting plasma high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, 
triglyceride, and total cholesterol measured during follow-up visits at ages 15, 17, and 24 years were analyzed.  
Results: Total fat mass partly mediated the inverse associations of LPA with low-density lipoprotein cholesterol by 13%, triglyceride by 28%, and 
total cholesterol by 6%. Total fat mass mediated the inverse associations of MVPA with low-density lipoprotein cholesterol by 37% and total 
cholesterol by 48%, attenuating the effect on total cholesterol to nonsignificance (P = .077). In the temporal path analyses, higher MVPA at 
age 15 years was associated with lower low-density lipoprotein cholesterol at 24 years (β = −0.08, SE, 0.01, P = .022) but not vice versa.  
Conclusion: Sedentary time worsens lipid indices, but increased LPA had a 5- to 8-fold total cholesterol-lowering effect and was more resistant 
to the attenuating effect of fat mass than MVPA. 
Key Words: pediatrics, dyslipidemia, causal inference, longitudinal study, movement behavior, body composition, lifestyle modification 
Abbreviations: LPA, light physical activity; MVPA, moderate to vigorous physical activity; PA, physical activity. 

Elevated lipid levels and dyslipidemia in childhood have been 
associated with subclinical atherosclerosis in midadulthood 
and premature cardiovascular mortality in midlife (1, 2). 
Emerging longitudinal studies suggest that elevated lipid and 
dyslipidemia's effect on subclinical atherosclerosis may be evi-
dent in young adulthood and that early intervention in late 
adolescence may reverse atherosclerotic processes (3, 4). A 
20-year long-term dietary counseling randomly assigned but 
unmasked group trial conducted among 1116 infants from 
5 months until age 20 years with a 6-year postintervention 
follow-up reported minimal or no statistically significant dif-
ference in total cholesterol, high-density lipoprotein choles-
terol, low-density lipoprotein cholesterol, and triglyceride in 
the intervention and control group (5). Moreover, the ob-
served positive physical activity (PA) effects on lower lipids 
levels during clinical trials tend to significantly attenuate after 
the intervention period and the reason remains unclear (6, 7). 

The recent World Health Organization PA guideline that 
recommended decreasing sedentary time and increasing mod-
erate to vigorous PA (MVPA) in children and adolescents for 
the prevention of cardiometabolic diseases was based largely 
on cross-sectional reports that accelerometer-based PA was 
associated with lower triglyceride and higher high-density 
lipoprotein cholesterol (8, 9). However, long-term longitudin-
al evidence on the associations of accelerometer-measured 
sedentary time and MVPA with lipid indices in children are 
few, and existing ones are of low quality (6-8, 10). This PA 
guideline did not specifically mention light PA (LPA) for chil-
dren and adolescents due to scarce evidence (8). Recent longi-
tudinal reports suggest that LPA maybe more effective in 
lowering inflammation than MVPA (11). Longitudinal evi-
dence on accelerometer-measured LPA in association with lip-
id indices is limited in the pediatric population (6-8). The 
longitudinal mediating roles of body composition, insulin  
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resistance, and inflammation in these associations are unknown 
and evidence is lacking regarding whether poor movement be-
havior temporally precedes altered lipid levels (7, 10, 11). 
Clarifying potential temporal associations of objectively meas-
ured movement behavior with lipid indices is an important in-
quiry that has implications for mounting effective childhood 
dyslipidemia prevention programs (6-8, 10). Moreover, wear-
able devices are becoming important in prevention, early detec-
tion, screening, and disease management (12). 

The present study (1) examined the longitudinal associations 
of cumulative accelerometer-measured sedentary time, LPA, 
and MVPA, with repeated measures of fasting plasma high- 
density lipoprotein cholesterol, low-density lipoprotein choles-
terol, triglyceride, and total cholesterol in 11-year-old children 
followed-up for 13 years; (2) assessed the extent to which 
the associations of movement behavior with lipid indices is 
mediated by fat mass, lean mass, insulin resistance, and inflam-
mation; and (3) examined the temporal interrelations of move-
ment behaviors with lipid indices using data from the Avon 
Longitudinal Study of Parents and Children (ALSPAC) birth 
cohort, England. It was hypothesized that increased sedentary 
time and decreased PA would worsen the lipid profile which 
could be mediated by increased adiposity. 

Materials and Methods 
Study Cohort 
Data were from the ALSPAC birth cohort, which investigates 
factors that influence childhood development and growth. 
Pregnant women resident in Avon, UK, with expected dates 
of delivery between April 1 1991 and December 31 1992 
were invited to take part in the study. A total of 20 248 preg-
nancies were identified as being eligible and the initial number 
of pregnancies enrolled was 14 541. Of the initial pregnancies, 
there was a total of 14 676 fetuses, resulting in 14 062 live 
births and 13 988 children who were alive at 1 year of age. 
When the oldest children were approximately 7 years of age, 
an attempt was made to bolster the initial sample with eligible 
cases who had failed to join the study originally. As a result, 
when considering variables collected from the age of 7 on-
wards (and potentially abstracted from obstetric notes) there 
are data available for more than the 14 541 pregnancies men-
tioned above. The number of new pregnancies not in the initial 
sample (known as Phase I enrollment) that are currently rep-
resented in the released data and reflecting enrollment status 
at the age of 24 is 906, resulting in an additional 913 children 
being enrolled (456, 262, and 195 recruited during Phases II, 
III, and IV respectively). The total sample size for analyses us-
ing any data collected after the age of 7 was therefore 15 447 
pregnancies, resulting in 15 658 fetuses. Of these 14 901 chil-
dren were alive at 1 year of age. Regular clinic visits of the chil-
dren commenced at 7 years of age and are still ongoing into 
adulthood. Study data at 24 years of age were collected and 
managed using REDCap electronic data capture tools (13). 
In this study, of 2040 participants with at least 2 time-points 
of valid sedentary time, LPA, and MVPA measurements at ei-
ther age 11, 15, or 24 years clinic visit only 792 participants 
with complete high-density lipoprotein cholesterol, low- 
density lipoprotein cholesterol, triglyceride, and total choles-
terol measures at 15, 17, and 24 years clinic visits were eligible 
for analyses (Fig. S1 (14)). The excluded participants who 
had 1 or no time-point measure of sedentary time and PA dur-
ing the 13-year-long follow-up study had similar baseline 

characteristics with those included in the study (Table S1 
(14)). Ethics approval for the study was obtained from the 
ALSPAC Ethics and Law Committee and the Local Research 
Ethics Committees. Informed consent for the use of data col-
lected via questionnaires and clinics was obtained from partic-
ipants following the recommendations of the ALSPAC Ethics 
and Law Committee at the time (15-17). Consent for biologic-
al samples has been collected in accordance with the Human 
Tissue Act (2004). Please note that the study website contains 
details of all the data that are available through a fully search-
able data dictionary and variable search tool (http://www. 
bristol.ac.uk/alspac/researchers/our-data/). 

Sedentary Time and Physical Activity Assessment 
Sedentary time, LPA, and MVPA were assessed with an 
ActiGraphTM (LLC, Fort Walton Beach, FL, USA) acceler-
ometer worn on the waist for 7 consecutive days at the 11- 
and 15-year clinic visits whereas movement behavior at 24 
year was assessed using an ActiGraph GT3X+ accelerometer 
device worn for 4 consecutive days (11, 18). Participants 
were instructed to wear the device from first thing in the 
morning until they went to bed. A valid day was defined as 
providing data for at least 10 hours per day (excluding se-
quences of 10 or more minutes with consecutive 0 counts) 
and children were only included in the analyses if they pro-
vided at least 3 valid days of recording. The devices capture 
movement in terms of acceleration as a combined function of 
frequency and intensity. Data are recorded as counts that re-
sult from summing postfiltered accelerometer values (raw 
data at 30 Hz) into 60-second epoch units. Data were proc-
essed using Kinesoft software, version 3.3.75 (Kinesoft), ac-
cording to an established protocol (19). Activity counts per 
minute threshold validated in young people were used to cal-
culate the amount of time spent: MVPA, >2296 counts per 
minute (cpm); LPA, 100 to 2296 cpm; and sedentary time, 
0 to <100 cpm at ages 11 and 15 years using the Evenson cut-
point whereas, at the 24-year assessment, the 2020 cpm 
Troiano cut point was used (3, 19, 20). The Evenson cut 
point used in stratifying activity threshold has shown the 
best overall performance across all intensity levels and was 
suggested to be the most appropriate cut point for youth 
(21, 22). 

Lipid Assessments 
There were no measures of fasting plasma lipids at age 11 
years. Fasting plasma high-density lipoprotein cholesterol, 
low-density lipoprotein cholesterol, triglyceride, and total 
cholesterol were assessed at the 15-, 17-, and 24-year clinic 
visits, and a detailed assessment has been reported (coefficient 
of variation was <5%) (20, 23-25). Using standard protocols, 
fasting plasma samples at ages 15, 17, and 24 years were col-
lected, spun, and frozen at −80 °C. 

Anthropometry and Body Composition 
Anthropometry (height and weight) at ages 11, 15, and 24 
years were assessed in line with standard protocols, and 
body mass index was computed as weight in kilograms per 
height in meters squared (20, 23). Body composition (total 
fat mass and lean mass) was assessed using a dual-energy 
X-ray absorptiometry scanner at 11, 15, and 24 years clinic 
visits as previously described (20, 23, 24).  

2                                                                                                    The Journal of Clinical Endocrinology & Metabolism, 2023, Vol. 00, No. 0 
D

ow
nloaded from

 https://academ
ic.oup.com

/jcem
/advance-article/doi/10.1210/clinem

/dgad688/7471719 by guest on 19 D
ecem

ber 2023

http://www.bristol.ac.uk/alspac/researchers/our-data/
http://www.bristol.ac.uk/alspac/researchers/our-data/


Cardiometabolic, Socioeconomic, and Lifestyle 
Factors 
Heart rate and systolic and diastolic blood pressure were 
measured with an Omron monitor at ages 11, 15, and 24 years 
as previously detailed (20, 23). A detailed assessment of fast-
ing high-sensitivity C-reactive protein and glucose has been 
described (20, 23, 24). Fasting insulin was assessed using an 
ultrasensitive automated microparticle enzyme immunoassay 
(Mercodia), which does not cross-react with proinsulin; the 
sensitivity of the immunoassay was 0.07 mU/L (26). The 
homeostatic model assessment of insulin resistance was calcu-
lated by fasting plasma insulin × fasting plasma glucose/22.5 
(27, 28). At the 17-year clinic visit, participants were briefly 
asked about their personal and family (mother, father, and 
siblings) medical history such as a history of hypertension, 
diabetes, high cholesterol, and vascular disease. All partici-
pants had attained puberty at the 17-year clinic visit using a 
time (years) to age at peak height velocity objective assessment 
derived using superimposition by translation and rotation 
mixed-effects growth curve analysis (3, 20, 29). The socio-
economic status of the participant's mother was grouped ac-
cording to the 1991 British Office of Population and Census 
Statistics classification (30). Questionnaires to assess smoking 
behavior were administered at the 13-, 15-, and 24-year clinic 
visits. A specific question regarding whether participants 
smoked in the last 30 days was used as an indicator of current 
smoking status. 

Statistical Analysis 
Cohort descriptive characteristics were summarized as means 
and SD, medians, and interquartile ranges, or frequencies and 
percentages. Sex differences were explored using independent 
t-tests, Mann–Whitney U tests, or chi-square tests for normal-
ly distributed, skewed, or dichotomous variables, respectively. 
Multicategory variables were analyzed using one-way analysis 
of variance. Normality was assessed by histogram curve, 
quantile–quantile plot, and Kolmogorov–Smirnov tests. 
Logarithmic transformation of skewed variables was con-
ducted and normality was confirmed prior to further analysis. 

Mediation path analyses 
Mediating path analyses using structural equation models sep-
arately examined the mediating role of cumulative total fat 
mass and lean mass on the longitudinal associations of cumu-
lative sedentary time, LPA, or MVPA with each of cumulative 
high-density lipoprotein cholesterol, low-density lipoprotein 
cholesterol, triglyceride, and total cholesterol. Analyses were 
adjusted for age, sex, insulin resistance, high-sensitivity 
C-reactive protein, family history of hypertension and cardio-
vascular diseases, smoking status, socioeconomic status, heart 
rate, total fat mass, lean mass, sedentary time, LPA, MVPA, 
and high-density lipoprotein cholesterol, low-density lipopro-
tein cholesterol, triglyceride, or total cholesterol depending on 
the mediator, predictor, or outcome. The path models had 3 
equations per regression analysis: the longitudinal associa-
tions of cumulative sedentary time, LPA, or MVPA with cu-
mulative total fat mass, lean mass, insulin resistance, or 
inflammation (Equation 1); the longitudinal associations 
of cumulative total fat mass or lean mass with high-density 
lipoprotein cholesterol, low-density lipoprotein cholesterol, 
triglyceride, and total cholesterol (Equation 2); and the longi-
tudinal associations of cumulative sedentary time, LPA, and 

MVPA with cumulative high-density lipoprotein cholesterol, 
low-density lipoprotein cholesterol, triglyceride and total 
cholesterol (Equation 3, total effect), and Equation 3′ (direct 
effect) accounted for the mediating role of total fat mass, 
lean mass, insulin resistance or inflammation on the longitu-
dinal associations of cumulative sedentary time, LPA, and 
MVPA with cumulative high-density lipoprotein cholesterol, 
low-density lipoprotein cholesterol, triglyceride, and total 
cholesterol. The proportion of mediating or suppressing roles 
was estimated as the ratio of the difference between Equation 
3 and Equation 3′ or the multiplication of Equations 1 and 2 
divided by Equation 3 and expressed as a percentage. A medi-
ating or indirect role is confirmed when there are statistically 
significant associations between (1) the predictor and medi-
ator, (2) the predictor and outcome, (3) the mediator and out-
come, and when (4) the longitudinal associations between the 
predictor and outcome variable was attenuated upon inclu-
sion of the mediator (31). However, when the magnitude of 
the longitudinal association between the predictor and out-
come is increased upon inclusion of a third variable, a suppres-
sion is confirmed (31). Path analyses were conducted with 
1000 bootstrapped samples. 

Temporal path analyses 
Lastly, we used structural equation modeling with an autore-
gressive cross-lagged design to examine the separate temporal 
associations of sedentary time, LPA, and MVPA with each of 
high-density lipoprotein cholesterol, low-density lipoprotein 
cholesterol, triglyceride, and total cholesterol at ages 15 and 
24 years only, due to the lack of fasting lipid data at age 11 
years. The cross-lagged models first tested the separate associ-
ations of sedentary time, LPA, and MVPA at 15 years with 
each of high-density lipoprotein cholesterol, low-density lipo-
protein cholesterol, triglyceride, and total cholesterol at 24 
years. Next, the separate associations of high-density lipopro-
tein cholesterol, low-density lipoprotein cholesterol, triglycer-
ide, and total cholesterol at 15 years with sedentary time, LPA, 
and MVPA at 24 years were examined. These models were ad-
justed for all covariates measured at 15 years. In the cross- 
lagged design, the potential association could be sedentary 
time, LPA, and MVPA leading to lipid levels, lipid levels lead-
ing to sedentary time, LPA, and MVPA, or bidirectional asso-
ciations of sedentary time, LPA, and MVPA with lipid levels. 
If a path from sedentary time, LPA, and MVPA at time t-1 (15 
years) to each of high-density lipoprotein cholesterol, low- 
density lipoprotein cholesterol, and triglyceride at time t-2 
(24 years) reached significance (P < .05), changes in the earlier 
variables are considered to lead to changes in the later, and 
vice versa. A stronger predictive effect is determined by a lar-
ger standardized regression coefficient. We concluded that the 
cross-lagged models had good fits with the following indices: 
the root mean square error of approximation <0.05, the 
normed fit index, relative fit index, incremental fit index, 
Tucker–Lewis fit index, and comparative fit index, >0.90 
for all (32). Error terms were included in the cross-lagged 
model. 

Collinearity diagnoses were performed and accepted results 
with a variance inflation factor <5, considered differences and 
associations with a 2-sided P < .05 to be statistically signifi-
cant, and made conclusions based on effect estimates and their 
CIs. Covariates were identified based on previous studies (7, 8,  
10, 20, 24, 30, 33-35). Analyses involving 800 ALSPAC  
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children at 0.8 statistical power, 0.05 alpha, and 2-sided P val-
ue would show a minimum detectable effect size of 0.09 SD if 
they had relevant exposure for a normally distributed quanti-
tative variable (36). All statistical analyses were performed us-
ing SPSS statistics software, Version 27.0 (IBM Corp, 
Armonk, NY, USA), and mediation analyses and autoregres-
sive cross-lagged temporal path structural equation modeling 
was conducted using IBM AMOS version 27.0. 

Results 
Altogether 792 participants who had at least 2 time-point 
measures of sedentary time, LPA, and MVPA during the 11, 
15, and 24-year clinic visits with complete fasting high-density 
lipoprotein cholesterol, low-density lipoprotein cholesterol, 
triglyceride, and total cholesterol measures at ages 15, 17, 
and 24 years were included (Fig. S1 (14)). The excluded par-
ticipants who had 1 or no time-point measure of movement 
behavior during the 13-year-long follow-up study had charac-
teristics similar to those included in the study (Table S1 (14)). 
Sedentary time increased, LPA decreased, and MVPA was 
U-shaped from ages 11 through 24 years in both males and fe-
males (Table 1 and Fig. 1). From ages 15 to 24 years, lipid in-
dices increased (Table 1 and Fig. 1). Other characteristics are 
described in Table 1. 

Mediating or Suppressing Effects of Body 
Composition, Insulin Resistance, and Inflammation 
in the Associations of Sedentary Time, LPA, and 
MVPA With Lipid Indices 
Cumulative sedentary time was positively associated with cu-
mulative high-density lipoprotein cholesterol, low-density 
lipoprotein cholesterol, triglyceride, and total cholesterol 
(Table 2). Insulin resistance partly mediated the positive asso-
ciations of sedentary time with high-density lipoprotein chol-
esterol, but suppressed the associations with low-density 
lipoprotein cholesterol, triglyceride, and total cholesterol 
(Table 2). Lean mass partly suppressed the positive associa-
tions of sedentary time with high-density lipoprotein choles-
terol and mediated the associations with triglyceride 
(Table 2). Fat mass and inflammation had no significant medi-
ating effect on the associations between sedentary time and 
lipid indices. 

Cumulative LPA was inversely associated with cumulative 
high-density lipoprotein cholesterol, low-density lipoprotein 
cholesterol, and triglyceride (Table 3). Total fat mass partly 
suppressed the inverse associations of LPA with high-density 
lipoprotein cholesterol, but partly mediated the associations 
with low-density lipoprotein cholesterol, triglyceride, and to-
tal cholesterol (Fig. 2 and Table 3). Lean mass, insulin resist-
ance, and inflammation had no significant mediating effect on 
the associations between LPA and lipid indices. 

Cumulative MVPA was inversely associated with cumula-
tive high-density lipoprotein cholesterol, low-density lipopro-
tein cholesterol, and triglyceride (Table 4). Fat mass had a 
37% and 48% mediation effect on the inverse associations 
of MVPA with low-density lipoprotein cholesterol and total 
cholesterol, respectively, but not with high-density lipoprotein 
cholesterol and triglyceride (Fig. 2 and Table 4). Fat mass had 
an 8% and 91% mediation effect on the inverse associations of 
MVPA with low-density lipoprotein cholesterol in males and 
females, respectively (Fig. 3), but no significant differences 

with other lipid indices (data not shown). Lean mass partially 
suppressed the inverse associations of MVPA with low-density 
lipoprotein cholesterol, triglyceride, and total cholesterol 
(Table 4). Insulin resistance and inflammation had no signifi-
cant mediating or suppressing effect on the associations be-
tween MVPA and lipid indices. 

Temporal (Cross-lagged) and Inter-relational 
(Autoregressive) Associations of Sedentary Time, 
LPA, and MVPA With Lipid Indices 
MVPA, high-density lipoprotein cholesterol, low-density lipo-
protein cholesterol, triglyceride, and total cholesterol at age 
15 years were positively associated with their individual vari-
ables at age 24 years; however, sedentary time and LPA at age 
15 years was inversely associated with their individual varia-
bles at age 24 years (Table 5). Higher MVPA at 15 years 
was associated with lower low-density lipoprotein cholesterol 
at 24 years but low-density lipoprotein cholesterol at 15 years 
was not associated with MVPA at 24 years (Table 5). There 
were no temporal or bidirectional relationships of sedentary 
time, LPA, or MVPA with high-density lipoprotein choles-
terol, triglyceride, or total cholesterol. Sedentary time or 
LPA had no temporal relations with low-density lipoprotein 
cholesterol or total cholesterol (Table 5). 

Discussion 
This longitudinal study demonstrates that poor movement be-
havior may be independently associated with poor lipid indi-
ces and that higher MVPA in adolescence may temporally 
precede lower low-density lipoprotein cholesterol in young 
adulthood. All movement behavior had paradoxical relation-
ships with high-density lipoprotein cholesterol in which in-
creased PA and less sedentary time were associated with 
decreased high-density lipoprotein cholesterol. Insulin resist-
ance and body composition had differing mediating or sup-
pressing roles in the associations of movement behavior 
with lipid indices, but low-grade inflammation had no signifi-
cant effect. Total fat mass significantly attenuated the inverse 
associations of LPA and MVPA with low-density lipoprotein 
cholesterol and total cholesterol. 

Sedentary Time and Lipid Indices 
The quality of evidence on the longitudinal associations of 
sedentary time with lipid indices was downgraded to very 
low because of the serious risk of bias and inconsistency, 
and short follow-up, hence the call for improved quality lon-
gitudinal evidence (7, 10, 37). In the present study, cumulative 
sedentary time was positively associated with cumulative low- 
density lipoprotein cholesterol and triglyceride even after 
mutual adjustments for LPA and MVPA, but there were no me-
diating effects of traditional risk factors such as fat mass and in-
flammation, and sedentary time–lipid relationships may not be 
temporal. These findings suggest that the contribution of seden-
tary time to lipid alterations may be more complex in growing 
children than previously identified in experimental studies (38- 
40). Importantly, insulin resistance significantly suppressed the 
relationship of sedentary time with low-density lipoprotein 
cholesterol and triglyceride. Sedentary time may decrease the 
expression of anti-inflammatory and antioxidative modulators 
such as nicotinamide N-methyltransferase as well as regulators 
of glucose transporter type 4 translocation (38, 40).  
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Figure 1. Characteristics of movement behavior and lipid profile of participants from childhood through young adulthood (Males n = 337, Females n = 
455). Sedentary time, light physical activity, moderate to vigorous physical activity, HDL and LDL are presented as means and SD. Triglycerides are 
presented as median and interquartile range. HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol.  

Table 2. Mediating or suppressing role of cumulative fasting metabolic indices and inflammation on the longitudinal associations of cumulative 
sedentary time with cumulative lipids 

Cumulative sedentary 
time from ages 11 to 24 
years 
N = 792        

Total effect Direct effect Indirect effect 
Mediation or 
suppression (%) 

Mediators β (95% CI) P 
value 

β (95% CI) P 
value 

β (95% CI) P 
value   

Cumulative fasting high-density lipoprotein cholesterol from ages 15 to 24 years  

Total fat mass  0.303 (0.259-0.345)  .002  0.303 (0.259-0.344)  .002  0.000 (−0.005-0.003)  .838 0  

Lean mass  0.376 (0.332-0.420)  .002  0.394 (0.348-0.439)  .002  −0.017 (−0.027-−0.008)  .003 4.5 suppression  

Insulin resistance  0.290 (0.253-0.332)  .002  0.268 (0.229-0.309)  .002  0.022 (0.014-0.035)  .001 7.6 mediation  

High-sensitivity CRP  0.305 (0.265-0.347)  .002  0.308 (0.267-0.348)  .002  −0.003 (−0.014-0.007)  .482 1.0 

Cumulative fasting low-density lipoprotein cholesterol from ages 15 to 24 years    

Total fat mass  0.060 (0.018-0.101)  .003  0.059 (0.018-0.098)  .003  0.001 (−0.011-0.016)  .796 1.7  

Lean mass  0.148 (0.103-0.187)  .003  0.144 (0.097-0.186)  .002  0.003 (−0.001-0.099)  .166 2.1  

Insulin resistance  0.146 (0.107-0.184)  .002  0.178 (0.142-0.215)  .002  −0.032 (−0.048-−0.019)  .001 21.9 suppression  

High-sensitivity CRP  0.136 (0.096-0.174)  .002  0.131 (0.091-0.168)  .002  0.006 (−0.006-0.017)  .287 4.4 

Cumulative fasting triglyceride from ages 15 to 24 years    

Total fat mass  0.020 (−0.022-0.064)  .353  0.019 (−0.024-0.058)  .434  0.002 (−0.011-0.016)  .758 10.0  

Lean mass  0.046 (0.001-0.085)  .042  0.031 (−0.016-0.072)  .253  0.015 (0.008-0.025)  .002 32.6 mediation  

Insulin resistance  0.096 (0.052-0.132)  .004  0.148 (0.111-0.180)  .003  −0.052 (−0.078-−0.030)  .001 54.2 suppression  

High-sensitivity CRP  0.084 (0.042-0.121)  .004  0.075 (0.032-0.110)  .004  0.009 (−0.007-0.024)  .242 10.7 

Cumulative fasting total cholesterol from ages 15 to 24 years    

Total fat mass  0.192 (0.153-0.235)  .002  0.192 (0.153-0.231)  .002  0.000 (−0.013-0.015)  .969 0  

Lean mass  0.309 (0.264-0.346)  .003  0.311 (0.265-0.352)  .003  −0.002 (−0.007-0.002)  .284 0.65  

Insulin resistance  0.278 (0.238-0.312)  .002  0.313 (0.279-0.347)  .002  −0.036 (−0.053-−0.023)  .001 13.0 suppression  

High-sensitivity CRP  0.276 (0.240-0.313)  .002  0.274 (0.238-0.311)  .002  0.002 (−0.006-0.011)  .516 0.73 

Mediation structural equation model was adjusted for sex, family history of hypertension/diabetes/high cholesterol/vascular disease, socioeconomic status, and 
time-varying covariates measured at both baseline and follow-up, such as age, high sensitivity C-reactive protein (CRP), heart rate, systolic blood pressure, smoking 
status, and fat mass, lean mass, insulin resistance, light physical activity, and moderate to vigorous physical activity, with additional adjustments for high-density 
lipoprotein cholesterol, low-density lipoprotein cholesterol, or triglyceride depending on the mediator and outcome. β is the standardized regression coefficient. 
P < .05 was considered to be statistically significant and are in bold. Total cholesterol analyses was not adjusted for lipids. When the magnitude of the association 
between exposure and outcome is increased upon inclusion of a third variable, suppression occurred but was mediated if decreased.   
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Table 3. Mediating or suppressing role of cumulative fasting metabolic indices and inflammation on the longitudinal associations of light 
physical activity with cumulative lipids 

Cumulative light 
physical 
activity from ages 11 to 
24 years 
N = 792        

Total effect Direct effect Indirect effect 
Mediation or 
Suppression (%) 

Mediators β (95% CI) P 
value 

β (95% CI) P 
value 

β (95% CI) P 
value   

Cumulative fasting high-density lipoprotein cholesterol from ages 15 to 24 years  

Total fat mass  −0.333 (−0.371-−0.290)  .003  −0.341 (−0.384-−0.297)  .003  0.008 (0.002-0.020)  .010 2.4 suppression  

Lean mass  −0.459 (−0.502-−0.413)  .002  −0.456 (−0.498-−0.407)  .002  −0.004 (−0.018-0.011)  .642 0.9  

Insulin resistance  −0.295 (−0.332-−0.254)  .003  −0.291 (−0.328-−0.254)  .003  −0.005 (−0.020-0.010)  .513 1.7  

High-sensitivity CRP  −0.335 (−0.373-−0.293)  .003  −0.332 (−0.371-−0.292)  .002  −0.003 (−0.017-0.012)  .649 0.9 

Cumulative fasting low-density lipoprotein cholesterol from ages 15 to 24 years  

Total fat mass  −0.141 (−0.187-−0.095)  .002  −0.123 (−0.166-−0.078)  .002  −0.018 (−0.036-−0.005)  .012 12.8 mediation  

Lean mass  −0.242 (−0.291-−0.197)  .001  −0.241 (−0.288-−0.195)  .001  −0.001 (−0.005-0.001)  .315 0.4  

Insulin resistance  −0.223 (−0.266-−0.184)  .002  −0.229 (−0.266-−0.192)  .002  0.006 (−0.013-0.026)  .518 2.7  

High-sensitivity CRP  −0.187 (−0.227-−0.144)  .002  −0.191 (−0.229-−0.149)  .002  0.003 (−0.009-0.016)  .610 1.6 

Cumulative fasting triglyceride from ages 15 to 24 years  

Total fat mass  −0.067 (−0.110-−0.023)  .002  −0.048 (−0.094-−0.004)  .030  −0.019 (−0.039-−0.005)  .017 28.4 mediation  

Lean mass  −0.071 (−0.117-−0.019)  .008  −0.073 (−0.120-−0.022)  .005  0.002 (−0.005-0.011)  .520 2.8  

Insulin resistance  −0.158 (−0.204-−0.104)  .002  −0.169 (−0.204-−0.131)  .002  0.011 (−0.021-0.047)  .468 7.0  

High-sensitivity CRP  −0.101 (−0.146-−0.057)  .002  −0.107 (−0.146-−0.063)  .003  0.005 (−0.015-0.023)  .632 5.0 

Cumulative fasting total cholesterol from ages 15 to 24 years  

Total fat mass  −0.283 (−0.324-−0.241)  .002  −0.266 (−0.305-−0.224)  .002  −0.018 (−0.034-−0.006)  .009 6.4 mediation  

Lean mass  −0.427 (−0.474-−0.385)  .001  −0.426 (−0.472-−0.384)  .001  −0.002 (−0.008-0.005)  .567 0.47  

Insulin resistance  −0.363 (−0.402-−0.325)  .002  −0.368 (−0.401-−0.332)  .002  0.005 (−0.013-0.024)  .605 1.4  

High-sensitivity CRP  −0.337 (−0.372-−0.297)  .002  −0.339 (−0.373-−0.300)  .003  0.002 (−0.007-0.012)  .706 0.59 

Mediation structural equation model was adjusted for sex, family history of hypertension/diabetes/high cholesterol/vascular disease, socioeconomic status, and 
time-varying covariates measured at both baseline and follow-up such as age, high sensitivity C-reactive protein (CRP), heart rate, systolic blood pressure, 
smoking status, and fat mass, lean mass, insulin resistance, sedentary time, and moderate-to-vigorous physical activity, with additional adjustments for 
high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, or triglyceride depending on the mediator and outcome. β is the standardized 
regression coefficient. P < .05 was considered to be statistically significant and are in bold. Total cholesterol analyses was not adjusted for lipids. When the 
magnitude of the association between the exposure and the outcome is increased upon inclusion of a third variable, suppression occurred but if decreased 
mediation occurred.  

Figure 2. Mediating effect of increased total fat mass on the longitudinal associations of light physical activity (A) and moderate to vigorous physical 
activity (B) from childhood with total cholesterol. Mediation structural equation model was adjusted for sex, family history of hypertension/diabetes/ 
high cholesterol/vascular disease, socioeconomic status, and time-varying covariates measured at both baseline and follow-up such as age, high 
sensitivity C-reactive protein, heart rate, systolic blood pressure, smoking status, lean mass, insulin resistance, sedentary time, and light physical 
activity or moderate to vigorous physical activity depending on the predictor. β is the standardized regression coefficient. P < .05 was considered to be 
statistically significant.   
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Light Physical Activity and Lipid Indices 
The latest World Health Organization PA guideline did not 
specifically mention LPA for children and adolescents (8). 
Longitudinal evidence on accelerometer-measured LPA in 
association with lipid indices is scarce in the pediatric popula-
tion (6-8). In the present study, cumulative LPA was inversely 
associated with low-density lipoprotein cholesterol, triglycer-
ide, and total cholesterol, and the relationship was significant-
ly mediated by fat mass. This suggests that among children 
and adolescents with obesity or high-body fat mass, the effect 
of LPA in decreasing low-density lipoprotein cholesterol and 
triglyceride may decrease by nearly 30%. This is similar to a 
recent longitudinal report where fat mass decreased the effect 
of increased LPA on decreased inflammation by nearly 30% 
(11). Importantly, the strength of the associations of LPA 
with low-density lipoprotein cholesterol, triglyceride, and to-
tal cholesterol was 2- to 5-fold higher than the effect of MVPA 

on low-density lipoprotein cholesterol, triglyceride, and total 
cholesterol. Thus, LPA might be a pragmatic target for future 
interventions and public health guidelines in the pediatric 
population since it is more feasible and accessible, requires 
less motivation, incidental to daily living, and does not require 
a high level of exercise skill or prior fitness (3, 6, 7, 11, 41). 

Moderate to Vigorous Physical Activity and Lipid 
Indices 
The relationships of MVPA with lipid indices in the pediatric 
population have been inconsistent in experimental and obser-
vational studies (6, 7). Observed positive MVPA effects on lip-
ids levels during clinical trials tend to significantly attenuate 
after the intervention period (6). In the present study with a 
long observation period (13 years), cumulative MVPA from 
childhood was associated with cumulatively decreased low- 

Table 4. Mediating or suppressing role of cumulative fasting metabolic indices and inflammation on the longitudinal associations of cumulative 
moderate to vigorous physical activity with cumulative lipids 

Cumulative moderate 
to vigorous 
physical activity from 
ages 
11 to 24 years  
(N = 792)        

Total effect Direct effect Indirect effect 

Mediation or 
suppression (%) 

Mediators β (95% CI) P 
value 

β (95% CI) P 
value 

β (95% CI) P 
value   

Cumulative fasting high-density lipoprotein cholesterol from ages 15 to 24 years  

Total fat mass  −0.027 (−0.063-0.008)  .113  −0.019 (−0.056-0.015)  .252  −0.007 (−0.014-−0.003)  .002 25.9  

Lean mass  −0.040 (−0.077-−0.006)  .016  −0.041 (−0.077-−0.007)  .016  0.001 (−0.001-0.003)  .515 2.5  

Insulin resistance  −0.054 (−0.092-−0.020)  .006  −0.052 (−0.089-−0.018)  .007  −0.002 (−0.010-0.005)  .478 3.7  

High-sensitivity 
CRP  

−0.048 (−0.084-−0.013)  .013  −0.049 (−0.084-−0.013)  .014  0.001 (−0.002-0.004)  .583 2.1 

Cumulative fasting low-density lipoprotein cholesterol from ages 15 to 24 years  

Total fat mass  −0.063 (−0.096-−0.022)  .003  −0.039 (−0.074-0.005)  .091  −0.023 (−0.038-−0.010)  .003 36.5 mediation  

Lean mass  −0.107 (−0.142-−0.068)  .002  −0.113 (−0.148-−0.073)  .003  0.007 (0.003-0.011)  .003 6.5 suppression  

Insulin resistance  −0.091 (−0.127-−0.052)  .002  −0.094 (−0.129-−0.054  .002  0.002 (−0.005-0.011)  .510 2.2  

High-sensitivity 
CRP  

−0.089 (−0.123-−0.052)  .002  −0.089 (−0.124-−0.050)  .002  −0.001 (−0.007-0.006)  .754 1.1 

Cumulative fasting triglyceride from ages 15 to 24 years  

Total fat mass  −0.012 (−0.045-0.024)  .547  0.011 (−0.021-0.053)  .472  −0.023 (−0.037-−0.010)  .004 191.6  

Lean mass  −0.056 (−0.087-−0.018)  .003  −0.065 (−0.100-−0.028)  .003  0.010 (0.005-0.016)  .004 17.9 suppression  

Insulin resistance  −0.027 (−0.057-0.009)  .147  −0.032 (−0.065-0.001)  .061  0.005 (−0.009-0.022)  .441 18.5  

High-sensitivity 
CRP  

−0.031 (−0.064-0.008)  .109  −0.030 (−0.063-0.008)  .131  −0.001 (−0.010-0.008)  .791 3.2 

Cumulative fasting total cholesterol from ages 15 to 24 years  

Total fat mass  −0.065 (−0.099-−0.030)  .003  −0.035 (−0.069-0.005)  .077  −0.031 (−0.049-−0.014)  .003 47.7 mediation  

Lean mass  −0.121 (−0.154-−0.085)  .003  −0.129 (−0.163-−0.094)  .003  0.008 (0.004-0.014)  .003 6.6 suppression  

Insulin resistance  −0.108 (−0.141-−0.074)  .003  −0.109 (−0.142-−0.073)  .003  0.000 (−0.007-0.008)  .924 0  

High-sensitivity 
CRP  

−0.105 (−0.136-−0.069)  .004  −0.162 (−0.135-−0.067)  .003  −0.002 (−0.008-0.005)  .470 1.9 

The mediation structural equation model was adjusted for sex, family history of hypertension/diabetes/high cholesterol/vascular disease, socioeconomic status, 
and time-varying covariates measured at both baseline and follow-up, such as age, high sensitivity C-reactive protein (CRP), heart rate, systolic blood pressure, 
smoking status, and fat mass, lean mass, insulin resistance, sedentary time, and light physical activity, with additional adjustments for high-density lipoprotein 
cholesterol, low-density lipoprotein cholesterol, or triglyceride depending on the mediator and outcome. β is standardized regression coefficient. P < .05 was 
considered to be statistically significant and are in bold. Total cholesterol analyses was not adjusted for lipids. When the magnitude of the association between 
the exposure and outcome is increased upon inclusion of a third variable suppression occurred but mediation, if decreased. Whenever the total effect is not 
statistically significant a subsequent significant indirect effect is not bolded due to the criteria for defining mediators.   
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Figure 3. Mediating effect of increased total fat mass on the longitudinal associations of moderate to vigorous physical activity from childhood with 
low-density lipoprotein cholesterol in males and females . The mediation structural equation model was adjusted for family history of hypertension/ 
diabetes/high cholesterol/vascular disease, socioeconomic status, and time-varying covariates measured at both baseline and follow-up, such as age, 
high sensitivity C-reactive protein, triglyceride, high-density lipoprotein cholesterol, heart rate, systolic blood pressure, smoking status, lean mass, 
insulin resistance, sedentary time, and light physical activity. β is the standardized regression coefficient. P < .05 was considered to be statistically 
significant.  

Table 5. Autoregressive cross-lagged temporal causal longitudinal analyses of sedentary time and physical activity with lipids at 15 and 24 years 
of age 

N = 792 participants 

High-density lipoprotein cholesterol  Low-density lipoprotein cholesterol 

Autoregressive B β SE P value  Autoregressive B β SE P value  

ST T1 → ST T2  −0.372  −0.348 0.179  .038   ST T1 → ST T2  −0.423  −0.397  0.177  .017 

LPA T1 → LPA T2  −0.040  −0.052 0.165  .806   LPA T1 → LPA T2  −0.067  −0.086  0.164  <.0001 

MVPA T1 → MVPA T2  0.814  0.684 0.142  <.0001   MVPA T1 → MVPA T2  0.822  0.689  0.139  <.0001 

HDL T1 → HDL T2  0.775  0.588 0.039  <.0001   LDL T1 → LDL T2  0.684  0.555  0.040  <.0001 

Cross-lagged 

ST T1 → HDL T2  0.000  0.024 0.000  .504   ST T1 → LDL T2  0.000  0.047  0.000  .218 

HDL T1 → ST T2  −9.559  −0.033 23.597  .685   LDL T1 → ST T2  3.029  0.021  11.703  .796 

LPA T1 → HDL T2  0.000  0.048 0.000  .168   LPA T1 → LDL T2  0.000  0.002  0.000  .967 

HDL T1 → LPA T2  3.324  0.020 14.286  .816   LDL T1 → LPA T2  5.178  0.062  6.916  .454 

MVPA T1 → HDL T2  0.000  0.031 0.000  .359   MVPA T1 → LDL T2  −0.002  −0.082  0.001  .022 

HDL T1 → MVPA T2  1.815  0.017 8.667  .834   LDL T1 → MVPA T2  1.493  0.028  4.256  .726 

Triglyceride     Total cholesterol   

ST T1 → ST T2  −0.385  −0.360 0.179  .032   ST T1 → ST T2  −0.440  −0.415  0.176  .012 

LPA T1 → LPA T2  −0.053  −0.067 0.164  .749   LPA T1 → LPA T2  −0.011  −0.014  0.166  .946 

MVPA T1 → MVPA T2  0.823  0.688 0.139  <.0001   MVPA T1 → MVPA T2  0.820  0.687  0.130  <.0001 

Triglyceride T1 → Triglyceride 
T2  

0.427  0.361 0.042  <.0001   Total cholesterol T1 → Total 
cholesterol T2  

0.731  0.562  0.041  <.0001 

Cross-lagged              Cross-lagged             

ST T1 → Triglyceride T2  0.000  0.026 0.000  .528   ST T1 → Total cholesterol T2  0.000  0.048  0.000  .205 

Triglyceride T1 → ST T2  −9.117  −0.016 46.041  .843   Total cholesterol T1 → ST T2  −7.699  −0.056  10.816  .843 

LPA T1 → Triglyceride T2  0.000  −0.054 0.000  .182   LPA T1 → Total cholesterol T2  0.000  0.010  0.000  .794 

Triglyceride T1 → LPA T2  17.547  0.054 27.459  .523   Total cholesterol T1 → LPA T2  6.642  0.083  6.391  .299 

MVPA T1 → Triglyceride T2  0.000  −0.001 0.000  .973   MVPA T1 → Total cholesterol T2  −0.002  −0.051  0.001  .163 

Triglyceride T1 → MVPA T2  −5.231  −0.025 16.688  .754   Total cholesterol T1 → MVPA T2  4.435  0.086  3.899  .255 

Model was adjusted for baseline age, sex, insulin, triglyceride, high sensitivity C-reactive protein, heart rate, systolic blood pressure, glucose, fat mass, lean 
mass, smoking status, socioeconomic status, and family history of hypertension/diabetes/high cholesterol/vascular disease, and triglyceride, high-density 
lipoprotein cholesterol or low-density lipoprotein cholesterol depending on outcome with additional adjustment for sedentary time (ST), light physical activity 
(LPA) or moderate to vigorous physical activity (MVPA) depending on the predictor. Total cholesterol was not adjusted for lipids. Skewed variables were 
logarithmically transformed before analyses. A 2-sided P-value <.05 is considered statistically significant and are in bold. 
Abbreviations: Time T1, 15 years of age; Time T2, 24 years; B, unstandardized regression; β, standardized regression, SE, standard error.   
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density lipoprotein cholesterol, triglyceride, and total choles-
terol that was suppressed by cumulative increase in lean 
mass but significantly mediated by increased total fat mass. 
It was observed that with the fat mass-mediating effect, the es-
timate of the inverse association of LPA with total cholesterol 
was decreased by 6.4% while the inverse association between 
MVPA and total cholesterol was decreased by 47.7%. While 
both LPA and MVPA were inversely associated with fat 
mass with a similar standardized effect estimate, an increased 
fat mass was associated with increased total cholesterol nearly 
2 -fold when MVPA rather than LPA was the predictor. 
Furthermore, the standardized effect estimate of LPA inverse 
association with total cholesterol was at least 5-fold more 
than the standardized effect estimate of MVPA inverse associ-
ation with total cholesterol. This suggests that LPA may have 
a better lipid-lowering effect than MVPA and that the MVPA 
effect can be significantly reduced by the presence of higher fat 
mass. It has been reported in children that higher fat mass pre-
dicted lower participation in exercise possibly due to low 
interest, comorbid conditions, and symptoms associated 
with vigorous exercise such as breathlessness, joint pains, 
muscle sprains, etc. (42). However, LPA provides an oppor-
tunity for persons with obesity to follow a path to potentially 
benefit from the lipid-lowering effect of mild exercise. This 
novel finding could explain the post-MVPA clinical trial 
failures in sustaining low lipid levels (6-8). Of note, the rela-
tionships between higher MVPA and lower low-density lipo-
protein cholesterol may have potential causal inference, 
considering the consistent linear and temporal relationship. 
The clinical significance of this result is that a 1 mmol/L 
statin-induced reduction in low-density lipoprotein choles-
terol was associated with a 20% decreased risk of major vas-
cular events in adults (43). In the present study, a 60-minute 
MVPA from childhood may decrease low-density lipoprotein 
cholesterol by 0.12 mmol/L, which could approximate to a 
2% risk reduction in major vascular events (43). 

In the present study, it was observed that increased MVPA 
and LPA and reduced sedentary time were associated with de-
creased high-density lipoprotein cholesterol. It has been estab-
lished that excessively elevated high-density lipoprotein 
cholesterol may be a sign of liver damage and has been associ-
ated with a higher risk of cardiovascular mortality in adults 
(44, 45). It is plausible that increased MVPA and LPA and de-
creased sedentary time promote liver health, enhancing opti-
mal high-density lipoprotein cholesterol production and 
metabolism in this apparently healthy young population, 
but further experimental studies are warranted to explain 
the paradoxical associations of cumulative MVPA with de-
creased high-density lipoprotein cholesterol. It was also noted 
that increased lean mass suppressed the relationship between 
increased MVPA and decreased triglyceride. In the present 
study, an increase in lean mass was longitudinally associated 
with better lipid profiles, which might have been enhanced 
by higher PA level–induced improved oxidation capacity 
and mitochondrial function (46). Nonetheless, the benefits 
of MVPA on lipid indices may be significantly diminished by 
increased fat mass. The mediating effect of fat mass on the in-
verse associations of MVPA with low-density lipoprotein 
cholesterol among females was circa 11-fold larger (91% vs 
8% mediation effect) than the mediating effect among males. 
Moreover, among females, the inverse associations of MVPA 
with low-density lipoprotein cholesterol was borderline sig-
nificant. Plausible explanations could be the inherent female 

biology characterized by more body fat mass compared to 
males (20) in addition to females spending significantly less 
time in MVPA in relation to males (11). 

Strength and Limitation 
The extensive array of gold standard and repeated measures of 
movement behaviors, body composition, and covariates 
throughout the follow-up period in the ALSPAC data set of-
fered the possibility of using advanced statistical models to 
test the likelihood of reverse causality, temporality, and causal 
explanatory pathway. The autoregressive cross-lagged tem-
poral path analyses examine the effect of 1 variable on another 
variable at a later time-point (47). The cross-lagged effects are 
adjusted for the effect of each variable at 1 time on the 
same variable later, which is the autoregressive effect, that 
represents the stability of each variable over time (47). Both 
cross-lagged and autoregressive effects are analyzed simultan-
eously allowing for examining temporal precedence (47). 
Temporality assessed with cross lagged analysis, which is a 
criterion for causal inference, is superior to cross-sectional 
correlational analysis (47). Moreover, the within-person level 
analyses may reflect potential causal effects than between- 
person associations (47). Observed or unobserved variables 
that are stable over time cannot, by design, confound within- 
level variables resulting in zero variations and correlations 
(47). This significantly reduces the risk for confounding and 
eliminates potential confounders bias (47). The findings fill 
knowledge gaps that might be useful in updating future PA 
guidelines (6-8, 10). Some limitations are that the study partic-
ipants were mostly White, thus generalization of findings to 
other racial and ethnic groups is limited. Moreover, residual 
confounding such as the unavailability of fasting lipid indices 
at age 11 years, could bias the findings; however, lipid meas-
ures at age 17 years were included in the analysis. Cohort at-
trition could lead to bias in observational studies, which may 
be negligible since participants who lacked certain movement 
behavior and metabolic variables had similar characteristics 
to those included in the analyses. The current study lacked 
data on the participants’ dietary habits, which could be a 
source of residual bias; however, it is known that body com-
position and metabolic indices reflect the participants’ diet. 
Moreover, accounting for total energy intake in early adoles-
cence did not significantly alter the results (data not shown). 
Other unmeasured factors such as alcohol intake and men-
strual cycle may bias the results, and future studies may ac-
count for these covariates. The accelerometer data were 
collected using a 60-second epoch that is known to underesti-
mate MVPA in pediatric populations. 

Conclusion 
Increasing cumulative MVPA may temporally precede 
decreased low-density lipoprotein cholesterol only but be 
associated with decreased total cholesterol. Cumulative sed-
entary time was associated with increasing low-density lipo-
protein cholesterol, triglyceride, and total cholesterol, while 
LPA was associated with decreasing low-density lipoprotein 
cholesterol, triglyceride, and total cholesterol, but the rela-
tionship may not be temporal. Promoting LPA and MVPA 
while decreasing sedentary time may be considered crucial 
intervention targets to attenuate the risk of elevated lipid lev-
els and their sequelae in the pediatric population. Increased 
LPA had a 5- to 8-fold total cholesterol-lowering effect and  
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was more resistant to the attenuating effect of fat mass com-
pared with MVPA. 
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