DOCUMENTACIÓN

Código curso 200823701

NUEVAS TENDENCIAS EN EL FITNESS:
MATERIALES PEQUEÑOS

Control neurológico del movimiento

ÁNGEL GUTIÉRREZ SAINZ
Profesor Titular de Fisiología del Ejercicio
Universidad de Granada

Sevilla
18 y 19 de septiembre de 2008
CONTROL NEUROLÓGICO DEL MOVIMIENTO
Impact of **sensorimotor training** on the rate of force development and neural activation.

The purpose of the present study was to examine the functional adaptations of a specific **sensorimotor training** on the explosive strength qualities of the leg extensor muscles during maximum isometric actions.

The ability to generate high muscular strength within short time periods is of functional importance not only as a basic quality in many sports disciplines but also for active stabilization of joints. The rate of force development (RFD) is generally used to describe this ability.
Previous studies revealed that adaptations following sensorimotor training, performed to improve functional joint or postural stability, were characterized by improvements in the rate of force development during maximum voluntary isometric contraction. In classical strength training studies using intense loads it has been shown that improvements in rate of force development is mainly due to adaptations in the intramuscular coordination.
It is concluded:

that classical strength training with high loads basically improves the mechanical efficiency of the efferent drive on the motoneurons,

whereas sensorimotor training alters the afferent input on the central nervous system.
Vías nerviosas aferentes y eferentes
Conclusión Final

La estructura de la corteza cerebral está Cambiando continuamente a el Entrenamiento,
Las adquisiciones conductuales y Motoras.

Brain Mechanisms for the formation of New Movements during Learning:
The Evolution of Classical Concepts.
FACTORES CRÍTICOS

CONSOLIDACIÓN DE LAS HABILIDADES MOTRICES

PLASTICIDAD CEREBRAL

MECANISMOS CEREBRALES PARA EL APRENDIZAJE MOTRICE
ENGRAMA MOTOR

ENGRAMA SENSORIAL
(Imagen de función motora hábil)
Postura:

Representa la posición global del tronco y extremidades entre sí y respecto del espacio.

Ajustes motores Adaptativos:

- Sostener cabeza y tronco contra FG
- Mantener CG dentro de base de Sust.
- Estabilizar regiones proximales para movtos. distales.
SENSORY RECEPTORS AND PATHWAYS

- Motor cortex
- Sensory cortex
- Thalamus
- Cerebellum
- Pons
- Medulla oblongata
- Reticular formation

- Skin
- Free nerve ending (pain, temperature)
- Meissner’s corpuscle (touch)
- Pacinian corpuscle (pressure)

- Golgi tendon organ
- Muscle spindle
Mecanismos de Ajuste posturales

1.- Mecanismos **ANTICIPATORIOS**: Predicen el desequilibrio (feedforward)

Respuestas prepro programadas

- Modificadas por la experiencia
- Mejoradas por la práctica
2.- Respuesta **COMPENSATORIA** (feedback)

Inducida por eventos sensoriales luego de la pérdida del equilibrio

Ambas son respuestas similares a reflejos, son moduladas para estabilizar adaptativamente la postura. Son “refinadas” por práctica y aprendizaje.
Deformidad de Fuerzas

Orientación de cabeza

Orientación relativa horizonte

Posición de extr.

Orientación de cabeza

Receptores

Cutáneos

Propioceptivos

Visuales
The effects of a **sensorimotor training** and a **strength training** on postural stabilisation, **maximum** isometric contraction and jump performance

Bruhn S; Kullmann N; Gollhofer A
University of Freiburg, Institute for Sport and Sportscience, Freiburg, Germany.

Previous studies revealed that adaptations following sensorimotor **training**, performed to improve functional joint or postural stability, were characterized by improvements in the rate of force development during **maximum** voluntary isometric contraction. In classical **strength training** studies using intense loads it has been shown that improvements in rate of force development is mainly due to adaptations in the **intramuscular coordination**.
Results of Resistance Training

- Increased muscle size (hypertrophy).
- Alterations of neural control of trained muscle.
- Studies show strength gains can be achieved without changes in muscle size, but not without neural adaptations.
Possible Neural Factors of Strength Gains

- Synchronization and recruitment of additional motor units for greater force production
- Counteraction of autogenic inhibition allowing greater force production
- Reduction of coactivation of agonist and antagonist muscles
- Changes in the discharge rates of motor units
- Changes in the neuromuscular junction
Desarrollo Cerebral
Desarrollo Cerebral
Logistics of Locomotion

- Initiation
- Coordination of rhythmic circuitry
- Adjustments to perturbations
- Feedback to central systems
- Postural control
Balanceo y gateo organizan en el cerebro los inicios vitales de la coordinación y el equilibrio.
THE NERVOUS SYSTEMS

Central nervous system
- Brain
- Spinal cord

Peripheral nervous system
- Cranial nerves
- Spinal nerves

Motor division (efferent)
- Automatic nervous system (involuntary)
- Somatic nervous system (voluntary)

Sensory division (afferent)
- Sympathetic division
- Parasympathetic division
Somatosensory Homunculus

This somatosensory homunculus, or “little man,” is drawn to show the disproportionate amount of brain area devoted to sensory input.
Áreas de Brodmann
• Primary motor cortex

• Involved in logical thinking
 – Planning
 – Decision making
 – Behavior inhibition
3 Clases de Movimientos

VOLUNTARIO
REFLEJO
AUTOMÁTICO
3 Classes of Movement

• **Reflexes**
 - involuntary, rapid, stereotyped
 eye-blink, coughing, knee jerk
 - graded control by eliciting stimulus

• **Rhythmic motor patterns**
 - combines voluntary & reflexive acts
 chewing, walking, running
 - initiation & termination voluntary
 - once initiated, repetitive & reflexive ~
Movimiento. Voluntario:

Los sistemas motores pueden utilizar estrategias dependiendo de la circunstancia.

Existe mejora con la experiencia y el aprendizaje.

No necesariamente los precede un estímulo externo.
SENSORY-MOTOR INTEGRATION

a. A stimulus to the skin is received by a sensory receptor.

b. The impulse travels through sensory neurons to the CNS.

c. The CNS interprets the information and determines the motor response.

de. The motor impulse reaches the muscle fibers and the response occurs.

d. The motor impulse travels out from the CNS through motor neurons.
CONTROL NEURAL DEL MÚSCULO
ENGRAMA MOTOR

ENGRAMA SENSORIAL
(Imagen de función motora hábil)
• Consolidación gradual de hab. Motrices luego de 4 horas aprendizaje

• Nuevos aprendizajes antes de finalizadas las 4 hrs disrumpe lo aprendido previamente

• Memoria de tipo “Explicita”
Brain Mechanisms for the formation of New Movements during Learning: The Evolution of Classical Concepts.

“Consolidación Temprana en corteza primaria”

- Consolidación pre frontales- premotora- corteza motora
- CMP involucrada en la adquisición de habilidades Motrices tempranas
- Estímulos de baja frec. con EMT en áreas diferentes de mvto. señalan la alteración de la consolidación de lo aprendido.
Motor learning elicited by voluntary drive

Martin Lotze and col.

Brain, 2003, 116
Brain Mechanisms for the formation of New Movements during Learning: The Evolution of Classical Concepts.

<table>
<thead>
<tr>
<th>NIVEL</th>
<th>FUNCION</th>
<th>ESTRUCTURA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTO</td>
<td>ESTRATEGIA</td>
<td>CORTEX (AREAS ASOCIATIVAS)</td>
</tr>
<tr>
<td>MEDIO</td>
<td>TACTICA</td>
<td>CORTEX MOT. CEREBELO</td>
</tr>
<tr>
<td>BAJO</td>
<td>EJECUCION</td>
<td>BULBO, MEDULA</td>
</tr>
</tbody>
</table>
SENSORY RECEPTORS AND PATHWAYS

- Skin
 - Free nerve ending (pain, temperature)
 - Meissner's corpuscle (touch)
 - Pacinian corpuscle (pressure)
- Muscle spindle
- Golgi tendon organ
- Kinesthetic receptor
- Spinal cord
 - Medulla oblongata
 - Pons
 - Thalamus
 - Cerebellum
 - Reticular formation
 - Sensory cortex
 - Motor cortex
SENSORY RECEPTORS AND PATHWAYS

- Skin
 - Free nerve ending (pain, temperature)
 - Meissner’s corpuscle (touch)
 - Pacinian corpuscle (pressure)

- Muscle spindle
- Golgi tendon organ
- Kinesthetic receptor
- Medulla oblongata
- Pons
- Cerebellum
- Reticular formation
- Thalamus
- Sensory cortex
- Motor cortex
SENSORY-MOTOR INTEGRATION

a. A stimulus to the skin is received by a sensory receptor.

b. The impulse travels through sensory neurons to the CNS.

c. The CNS interprets the information and determines the motor response.

d. The motor impulse travels out from the CNS through motor neurons.

e. The motor impulse reaches the muscle fibers and the response occurs.
Integration Centers

Spinal cord—simple motor reflexes such as pulling your hand away after touching something hot.

Lower brain stem—more complex subconscious motor reactions such as postural control.

Cerebellum—subconscious control of movement such as that needed to coordinate multiple movements.

Thalamus—conscious distinction among sensations such as feeling hot or cold.

Cerebral cortex—conscious awareness of a signal and the location within body of the signal.
Types of Sensory Receptors

Mechanoreceptors—respond to mechanical forces such as pressure, touch, vibrations, or stretch.

Thermoreceptors—respond to changes in temperature.

Nociceptors—respond to painful stimuli.

Photoreceptors—respond to light to allow vision.

Chemoreceptors—respond to chemical stimuli from foods, odors, and changes in blood concentrations.
VIBRATION TRAINING

Mechanisms and possible mechanisms relating to structural adaptations and acute effects
Nuevo!

Danger: Addictive!

Genera luz propia
ENTRENAMIENTO MEDIANTE VIBRACIONES MECÁNICAS

UN NUEVO MÉTODO EN LA ACTIVIDAD FÍSICA Y EL DEPORTE

Dpto. Fisiología. Facultad de Medicina
Facultad de Ciencias de la Actividad Física y el Deporte
Universidad de Granada
¿QUÉ ES?

EV: aplicación de estímulos vibratorios sobre el músculo esquelético, lo que provoca una contracción activa del mismo denominada *reflejo tónico vibratorio* (1,2).
Figure 1 Different designs of whole body vibrating plates.
ENTRENAMIENTO MEDIANTE VIBRACIONES MECÁNICAS

BASE FISIOLÓGICA

- Fibras aferentes Ia husos neuromusculares \(^{(3,4)}\)
- Fibras aferentes II husos neuromusculares \(^{(3,4)}\)
- Fibras aferentes Ib órgano tendinoso de Golgi \(^{(3,4)}\)
- Receptores cutáneos \(^{(5,6)}\)
ENTRENAMIENTO MEDIANTE VIBRACIONES MECÁNICAS

Mayor excitabilidad de la corteza motora (7)
Aumento en la activación de las α-motoneuronas (4,7)
Aumento de los potenciales motores evocados (8,9)
Reclutamiento de UM adicionales
Aumento señal EMG miembros superiores e inferiores

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>IDÓNEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia (Hz)</td>
<td>25 – 45</td>
</tr>
<tr>
<td>Amplitud (mm)</td>
<td>4 - 6</td>
</tr>
<tr>
<td>Tiempo (min)</td>
<td></td>
</tr>
<tr>
<td>serie</td>
<td>hasta 1’-1,5’</td>
</tr>
<tr>
<td>total sesión</td>
<td>hasta 20’ – 25’</td>
</tr>
<tr>
<td>Protocolo de ejercicios</td>
<td>dinámicos variados angulación específica con sobrecarga externa (en estado avanzado)</td>
</tr>
<tr>
<td>Tipo de atletas</td>
<td>mayores efectos cuanto mayor sea el nivel de entrenamiento</td>
</tr>
<tr>
<td>SISTEMA</td>
<td>MODIFICACIÓN</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| **Neuromuscular** | \(\uparrow P \)
| | \(\downarrow \text{EMG} \)
| | \(\uparrow \text{EMG (estimulaciones extenuantes)} \)
| | \(\uparrow \text{MCVI, } \uparrow \text{MCVC} \)
| | \(\uparrow \text{CMJ} \)
| | \(\uparrow \text{equilibrio estático} \)
| | \(\uparrow \text{perímetros musculares} \) |
| **Cardiorrespiratorio** | \(\uparrow \text{FC, } \uparrow \text{TA sistólica, } \downarrow \text{TA diastólica} \)
| | \(\uparrow \text{[lact], } \uparrow \text{QR} \)
| | \(\uparrow \text{flujo sanguíneo, vasodilatación, eritemas} \) |
| **Endocrino** | \(\uparrow \text{GH, } \uparrow \text{T, } \downarrow \text{C} \) |

Efectos agudos

Efectos Crónicos

<table>
<thead>
<tr>
<th>SISTEMA</th>
<th>MODIFICACIÓN</th>
</tr>
</thead>
</table>
| **Neuromuscular** | \(\uparrow \text{MCVI, } \uparrow 1 \text{ RM} \)
| | \(\uparrow \text{CMJ} \)
| | \(\uparrow \text{capacidad de salto (saltos repetidos 5’’) } \)
| | \(\uparrow \text{equilibrio estático} \) |
ENTRENAMIENTO MEDIANTE VIBRACIONES MECÁNICAS

EFECTOS DEL EV

• ↑ potencia muscular $^{(10,15,16,18)}$
• ↑ fuerza máxima dinámica $^{(15,17)}$
• ↑ fuerza máxima isométrica $^{(19,20)}$
• ↑ capacidad salto $^{(16,20)}$
• ↑ flujo sanguíneo $^{(21,22,23)}$
• ↑ GH ↑ T ↓ C : perfil anabólico $^{(16)}$
ENTRENAMIENTO MEDIANTE VIBRACIONES MECÁNICAS

EFECTOS DEL EV

CRÓNICOS

• ↑ potencia muscular (24)
• ↑ fuerza máxima dinámica (26,27,28)
• ↑ fuerza máxima isométrica (25,26)
• ↑ capacidad salto (24,25,26,27)
ENTRENAMIENTO MEDIANTE VIBRACIONES MECÁNICAS

EFECTOS DEL EV

CRÓNICOS

• mejora sistema propioceptivo y control postural sujetos sanos \(^{(29,30)}\), infartados \(^{(31)}\) y lesionados medulares \(^{(32)}\)
• personas mayores: mejora de la función neuromuscular \(^{(33,34,35,36)}\) y densidad mineral ósea cadera \(^{(37)}\)
• relación positiva EV - LBP \(^{(38)}\)
Whole body vibration exercise: are vibrations good for you?

Br J Sports Med 2005 Sep; 39(9):585-9; discussion 589

Cardinale M; Wakeling J
College of Life Sciences and Medicine, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK. m.cardinale@abdn.ac.uk.

Whole body vibration has been recently proposed as an exercise intervention because of its potential for increasing force generating capacity in the lower limbs.

Its recent popularity is due to the combined effects on the neuromuscular and neuroendocrine systems.

Preliminary results seem to recommend vibration exercise as a therapeutic approach for sarcopenia and possibly osteoporosis. This review analyses state of the art whole body vibration exercise techniques, suggesting reasons why vibration may be an effective stimulus for human muscles and providing the rationale for future studies.
Strength Increase after Whole-Body Vibration Compared with Resistance Training

CHRISTOPHE DELECLUSE¹, MACHELD ROELANTS¹, and SABINE VERSCHUEREN²

¹Exercise Physiology and Biomechanics Laboratory, and ²Laboratory of Motor Control, Faculty of Physical Education and Physiotherapy, Department of Kinesiology, Katholieke Universiteit Leuven, Leuven, BELGIUM

ABSTRACT

DELECLUSE, C., M. ROELANTS, and S. VERSCHUEREN. Strength Increase after Whole-Body Vibration Compared with Resistance Training. Med. Sci. Sports Exerc., Vol. 35, No. 6, pp. 1033–1041, 2003. Purpose: The aim of this study was to investigate and to compare the effect of a 12-wk period of whole-body vibration training and resistance training on human knee-extensor strength. Methods: Sixty-seven untrained females (21.4 ± 1.8 yr) participated in the study. The whole-body vibration group (WBV, N = 18) and the placebo group (PL, N = 19) performed static and dynamic knee-extensor exercises on a vibration platform. The acceleration of the vibration platform was between 2.28 g and 5.09 g, whereas only 0.4 g for the PL condition. Vibration (35–40 Hz) resulted in increased EMG activity, but the EMG signal remained unchanged in the PL condition. The resistance-training group (RES, N = 18) trained knee extensors by dynamic leg-press and leg-extension exercises (10–20 RM). All training groups exercised 3× wk⁻¹. The control group (CO, N = 12) did not participate in any training. Pre- and postisometric, dynamic, and ballistic knee-extensor strength were measured by means of a motor-driven dynamometer. Explosive strength was determined by means of a counter-movement jump. Results: Isometric and dynamic knee-extensor strength increased significantly (P < 0.001) in both the WBV group (16.6 ± 10.8%; 9.0 ± 3.2%) and the RES group (14.4 ± 5.3%; 7.0 ± 6.2%), respectively, whereas the PL and CO group showed no significant (P > 0.05) increase. Counter-movement jump height enhanced significantly (P < 0.001) in the WBV group (7.6 ± 4.3%) only. There was no effect of any of the interventions on maximal speed of movement, as measured by means of ballistic tests. Conclusions: WBV, and the reflexive muscle contraction it provokes, has the potential to induce strength gain in knee extensors of previously untrained females to the same extent as resistance training at moderate intensity. It was clearly shown that strength increases after WBV training are not attributable to a placebo effect. Key Words: MUSCLE STRENGTH, TONIC VIBRATION REFLEX, COUNTER-MOVEMENT JUMP, STRENGTH TRAINING
Strength Increase after Whole-Body Vibration Compared with Resistance Training

![Bar charts showing knee-extensor torque (N.m) for different groups: RES (N=18), WBV (N=18), PL (N=19), and CO (N=12).]

FIGURE 2—Mean and SD before (pre) and after (post) 12 wk in the RES, WBV, PL, and CO groups. Top: maximal isometric knee-extensor torque (ISO). Bottom: maximal dynamic knee-extensor torque (DYN). † refers to a significant interaction (group × time) effect at $P < 0.05$. * indicates that posttraining values are significantly higher than pretraining values at $P < 0.05$ (contrast analysis).
Strength Increase after Whole-Body Vibration Compared with Resistance Training

m. rectus femoris

- **Control**
 - EMG activity (µV)
 - rms=0.0461

- **Placebo**
 - EMG activity (µV)
 - rms=0.0603

- **WBV 35Hz**
 - EMG activity (µV)
 - rms=0.0591

Time (s)
Strength Increase after Whole-Body Vibration Compared with Resistance Training

CMJ †

![Bar chart showing counter movement jump height (CMJ) for different groups.](image)

FIGURE 4—Counter movement jump height (CMJ). Mean and SD before (pre) and after (post) 12 wk in the RES, WBV, PL, and CO groups. † refers to a significant interaction (group × time) effect at P < 0.05. * indicates that posttraining values are significantly higher than pretraining values at P < 0.05 (contrast analysis).
High-frequency vibration training increases muscle power in women.

Russo CR, Lauretani F, Bandinelli S, Bartali B, Cavazzini C, Guralnik JM, Ferrucci L.

Laboratory of Clinical Epidemiology, INRCA Geriatric Department, Florence, Italy.

OBJECTIVE: To test whether training on a high-frequency (28Hz) vibrating platform improves muscle power and bone characteristics in postmenopausal women. DESIGN: Randomized controlled trial with 6-month follow-up. SETTING: Outpatient clinic in a general hospital in Italy. PARTICIPANTS: Twenty-nine postmenopausal women (intervention group, n=14; matched controls, n=15). INTERVENTION: Participants stood on a ground-based oscillating platform for three 2-minute sessions for a total of 6 minutes per training session, twice weekly for 6 months. The controls did not receive any training. Both groups were evaluated at baseline and after 6 months. MAIN OUTCOME MEASURES: Muscle power, calculated from ground reaction forces produced by landing after jumping as high as possible on a forceplate, cortical bone density, and biomarkers of bone turnover.
Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety.

J Bone Miner Res 2004 Mar;19(3):343-51

Rubin C; Recker R; Cullen D; Ryaby J; McCabe J; McLeod K
Department of Biomedical Engineering, State University of New York, Stony Brook, New York, USA.

A 1-year prospective, randomized, double-blind, and placebo-controlled trial of 70 postmenopausal women demonstrated that brief periods (<20 minutes) of a low-level (0.2g, 30 Hz) vibration applied during quiet standing can effectively inhibit bone loss in the spine and femur, with efficacy increasing significantly with greater compliance, particularly in those subjects with lower body mass.
Plantar vibration improves leg fluid flow in perimenopausal women.

Stewart JM; Karman C; Montgomery LD; McLeod KJ
Depts. of Pediatrics and Physiology, The Center for Pediatric Hypotension and Division of Pediatric Cardiology, Suite 618, Munger Pavilion, New York Medical College, Valhalla, NY 10595, USA. stewart@nymc.edu.

The results suggest that plantar vibration serves to significantly enhance peripheral and systemic blood flow, peripheral lymphatic flow, and venous drainage, which may account for the apparent ability of such stimuli to influence bone mass.
The Effects of Exercise on the Brain

All types of aerobic exercise provide benefits:

Neurogénesis

Mood enhancement,

Endorphin release